2,456 research outputs found

    Functional Characteristics of Nematocysts Found on the Scyphomedusa Cyanea Capillata

    Get PDF
    Although prey capture by cnidarians is mediated through nematocysts, their influence on prey selection by cnidarians remains poorly documented. The difficulty in visualizing nematocyst–prey interactions remains the chief obstacle to understanding how the wide variety of nematocyst types influences the mechanics of prey capture. One solution to this limitation has been to assign functional roles to nematocysts based on morphological characters of discharged cnidae. Here we report results of an alternative approach based upon dynamic traits of nematocyst discharge. We examined tubule lengths, tubule discharge velocities and net-to-gross displacement ratios of tubules of discharging nematocysts possessed by the cosmopolitan scyphomedusa, Cyanea capillata. This nematocyst assemblage consisted of euryteles, birhopaloids and three different isorhizas — a-isorhizas, A-isorhizas and O-isorhizas. Dynamic traits varied little within each nematocyst type but there were significant differences between the different types. Most importantly, dynamic traits varied significantly within a broad category of nematocyst – the isorhizas – indicating that conventional classification schemes that infer function based on broad nematocyst categories may not appropriately describe the functional roles of these nematocysts. The dynamic properties of discharging nematocysts were consistent with physical results described in studies using scanning electron microscopy images of nematocyst–prey interactions. These data suggest that nematocysts vary significantly in their roles during predation, but that inferences relating prey selection with broad nematocyst categories merit careful examination

    Morphology, Swimming Performance and Propulsive Mode of Six Co-occurring Hydromedusae

    Get PDF
    Jet propulsion, based on examples from the Hydrozoa, has served as a valuable model for swimming by medusae. However, cnidarian medusae span several taxonomic classes (collectively known as the Medusazoa) and represent a diverse array of morphologies and swimming styles. Does one mode of propulsion appropriately describe swimming by all medusae? This study examined a group of co-occurring hydromedusae collected from the waters of Friday Harbor, WA, USA, to investigate relationships between swimming performance and underlying mechanisms of thrust production. The six species examined encompassed a wide range of bell morphologies and swimming habits. Swimming performance (measured as swimming acceleration and velocity) varied widely among the species and was positively correlated with bell streamlining (measured as bell fineness ratio) and velar structure development (measured as velar aperture ratio). Calculated thrust production due to jet propulsion adequately explained acceleration patterns of prolate medusae (Aglantha digitale, Sarsia sp. and Proboscidactyla flavicirrata) possessing well-developed velums. However, acceleration patterns of oblate medusae (Aequorea victoria, Mitrocoma cellularia and Phialidium gregarium) that have less developed velums were poorly described by jet thrust production. An examination of the wakes behind swimming medusae indicated that, in contrast to the clearly defined jet structures produced by prolate species, oblate medusae did not produce defined jets but instead produced prominent vortices at the bell margins. These vortices are consistent with a predominantly drag-based, rowing mode of propulsion by the oblate species. These patterns of propulsive mechanics and swimming performance relate to the role played by swimming in the foraging ecology of each medusa. These patterns appear to extend beyond hydromedusae and thus have important implications for other members of the Medusazoa

    Latitudinal Differentiation in the Effects of the Toxic Dinoflagellate Alexandrium spp. on the Feeding and Reproduction of Populations of the Copepod Acartia Hudsonica

    Get PDF
    Blooms of the dinoflagellate Alexandrium spp. increase in their frequency, toxicity and historical presence with increasing latitude from New Jersey (USA) to the Gaspé peninsula (Canada). Biogeographic variation in these blooms results in differential exposure of geographically separate copepod populations to toxic Alexandrium. We hypothesize that the ability of copepods to feed and reproduce on toxic Alexandrium should be higher in copepods from regions that are frequently exposed to toxic Alexandrium blooms. We tested this hypothesis with factorial common environment experiments in which female adults of the copepod Acartia hudsonica from five separate populations ranging from New Jersey to New Brunswick were fed toxic and non-toxic strains of Alexandrium, and the non-toxic flagellate Tetraselmis sp. Consistent with the hypothesis, when fed toxic Alexandrium we observed significantly higher ingestion and egg production rates in the copepods historically exposed to toxic Alexandrium blooms relative to copepods from regions in which Alexandrium is rare or absent. Such differences among copepod populations were not observed when copepods were fed non-toxic Alexandrium or Tetraselmis sp. These results were also supported by assays in which copepods from populations both historically exposed and naı̈ve to toxic Alexandrium blooms were fed mixtures of toxic Alexandrium and Tetraselmis sp. Two-week long experiments demonstrated that when copepods from populations naı̈ve to toxic Alexandrium were fed a toxic strain of Alexandrium they failed to acclimate, such that their ingestion rates remained low throughout the entire two-week period. The differences observed among populations suggest that local adaptation of populations of A. hudsonica from Massachusetts (USA) to New Brunswick (Canada) has occurred, such that some populations are resistant to toxic Alexandrium

    Prey Resource Utilization by Coexistent Hydromedusae from Friday Harbor, Washington, USA

    Get PDF
    Prey selection patterns were quantified for a sympatric group of hydromedusae from Friday Harbor, WA. Selection patterns varied between species, but were largely replicable between sample dates and resembled dietary patterns found in similar studies from neighboring regions. Ambush-foraging medusae (Aglantha digitale, Sarsia tubulosa, and Proboscidactyla flavicirrata) fed primarily on crustacean and ciliated prey but the dietary niches of these hydromedusan species centered on different fractions of the available plankton. Consequently, little dietary overlap occurred between the ambush foraging hydromedusae. In contrast, the dietary niches of cruising predators (Aequorea victoria, Mitrocoma cellularia, and Phialidium gregarium) overlapped substantially because those species all fed on similar soft-bodied prey such as eggs and appendicularians. These results have two important implications for trophic patterns involving medusae. First, different mechanisms of prey encounter and capture used by hydromedusae (ambush vs. cruising patterns) result in important interspecific dietary differences and, hence, trophic roles of the medusae. Second, whereas cruising medusae may consume similar prey and hence form a feeding guild, ambush-foraging medusae may experience substantially less prey overlap and, for the community examined here, do not experience potentially strong feeding competition from other medusan species

    Comparison of the Functional and Numerical Responses of Resistant versus Non-resistant Populations of the Copepod Acartia Hudsonica Fed the Toxic Dinoflagellate Alexandrium Tamarense

    Get PDF
    The functional and numerical responses of grazers are key pieces of information in predicting and modeling predator–prey interactions. It has been demonstrated that exposure to toxic algae can lead to evolved resistance in grazer populations. However, the influence of resistance on the functional and numerical response of grazers has not been studied to date. Here, we compared the functional and numerical responses of populations of the copepod Acartia hudsonica that vary in their degree of resistance to the toxic dinoflagellate Alexandrium tamarense. In common environment experiments carried out after populations had been grown under identical conditions for several generations, female copepods were offered solutions containing different concentrations of either toxic A. tamarense or the non-toxic green flagellate Tetraselmis sp. ranging from ∼25 to 500 μgC L−1, and ingestion and egg production rates were measured. Throughout most of the range of concentrations of the toxic diet, copepod populations that had been historically exposed to toxic blooms of Alexandrium exhibited significantly higher ingestion and egg production rates than populations that had little or no exposure to these blooms. In contrast, there were no significant differences between populations in ingestion or egg production for the non-toxic diet. Hence, the between population differences in functional and numerical response to A. tamarense were indeed related to resistance. We suggest that the effect of grazer toxin resistance should be incorporated in models of predator and toxic prey interactions. The potential effects of grazer toxin resistance in the development and control of Alexandrium blooms are illustrated here with a simple simulation exercise

    Testing for Resistance of Pelagic Marine Copepods to a Toxic Dinoflagellate

    Get PDF
    With few exceptions, the evolutionary consequences of harmful algae to grazers in aquatic systems remain unexplored. To examine both the ecological and evolutionary consequences of harmful algae on marine zooplankton, we used a two-fold approach. In the first approach, we examined the life history responses of two geographically separate Acartia hudsonica (Copepoda Calanoida) populations reared on diets containing the toxic dinoflagellate Alexandrium fundyense . One copepod population was from a region, Casco Bay, Maine, USA, that has experienced recurrent blooms of highly toxic Alexandrium spp. for decades; whereas the other population from Great Bay, New Jersey, USA, has never been exposed to toxic Alexandrium blooms. The life history experiment demonstrated that when the copepod population from New Jersey was reared on a diet containing toxic A. fundyense it exhibited lower somatic growth, size at maturity, egg production and survival than the same population reared on a diet without toxic A. fundyense . In contrast, toxic A. fundyense did not affect the life-history traits of the Maine population. Fitness, finite population growth rate (λ), was significantly reduced in the New Jersey population, but not in the Maine population. These results are consistent with the hypothesis of local adaptation (resistance) of the historically exposed copepod population to the toxic dinoflagellate. In the second approach, we further tested the resistance hypothesis with a laboratory genetic selection experiment with the naïve New Jersey copepod population exposed to a diet containing toxic A. fundyense. This experiment demonstrated that the ingestion and egg production of adult females of naïve copepods fed A. fundyense improved after three generations of being reared on a diet containing the toxic dinoflagellate. The results of the present study have important implications for understanding how grazer populations may respond to the introduction of toxic algae to their environment, and suggest that grazer resistance may be a feedback mechanism that may lead to bloom control

    The Numerical Comparison of Flow Patterns and Propulsive Performances for the Hydromedusae Sarsia Tubulosa and Aequorea Victoria

    Get PDF
    The thrust-generating mechanism of a prolate hydromedusa Sarsia tubulosa and an oblate hydromedusa Aequorea victoria was investigated by solving the incompressible Navier–Stokes equations in the swirl-free cylindrical coordinates. The calculations clearly show the vortex dynamics related to the thrust-generating mechanism, which is very important for understanding the underlying propulsion mechanism. The calculations for the prolate jetting hydromedusa S. tubulosa indicate the formation of a single starting vortex ring for each pulse cycle with a relatively high vortex formation number. However, the calculations for the oblate jet-paddling hydromedusa A. victoria indicate shedding of the opposite-signed vortex rings very close to each other and the formation of large induced velocities along the line of interaction as the vortices move away from the hydromedusa in the wake. In addition to this jet propulsion mechanism, the hydromedusa\u27s bell margin acts like a paddle and the highly flexible bell margin deforms in such a way that the low pressure leeward side of the bell margin has a projected area in the direction of motion. This thrust is particularly important during refilling of the subumbrella cavity where the stopping vortex causes significant pressure drag. The swimming performances based on our numerical simulations, such as swimming velocity, thrust, power requirement and efficiency, were computed and support the idea that jet propulsion is very effective for rapid body movement but is energetically costly and less efficient compared with the jet-paddling propulsion mechanism

    Language Acquisition in Computers

    Full text link
    This project explores the nature of language acquisition in computers, guided by techniques similar to those used in children. While existing natural language processing methods are limited in scope and understanding, our system aims to gain an understanding of language from first principles and hence minimal initial input. The first portion of our system was implemented in Java and is focused on understanding the morphology of language using bigrams. We use frequency distributions and differences between them to define and distinguish languages. English and French texts were analyzed to determine a difference threshold of 55 before the texts are considered to be in different languages, and this threshold was verified using Spanish texts. The second portion of our system focuses on gaining an understanding of the syntax of a language using a recursive method. The program uses one of two possible methods to analyze given sentences based on either sentence patterns or surrounding words. Both methods have been implemented in C++. The program is able to understand the structure of simple sentences and learn new words. In addition, we have provided some suggestions regarding future work and potential extensions of the existing program.Comment: 39 pages, 10 figures and 6 table
    • …
    corecore